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Membrane fusion lies at the heart of important biological
processes. In vivo, membrane fusion is tightly regulated by proteins.
The basic mechanism, however, is primarily determined by the
physics of lipid-lipid interactions.1 Here we describe molecular
dynamics simulations used to elucidate the molecular details of the
process of fusion for small lipid vesicles. The simulations are based
on a coarse grained (CG) lipid model that accurately represents
the lamellar state of a variety of phospholipids and enables us to
observe intermediate stages during fusion at near atomic detail. The
fusion intermediates found are in general agreement with the stalk-
pore mechanism.2 Transient pores sometimes form adjacent to the
stalk, however, resulting in the mixing of lipids from the outer and
inner monolayers. The speed of stalk forma-
tion and the opening of the fusion pore can be modulated by
altering the lipid composition in qualitative agreement with
experimental observations.

In CG models small groups of atoms are represented as single
interaction centers. Recently CG models have been successfully
used to study lipid membrane properties.3 In the model used in
this work, the headgroup consists of two polar particles for PC or
PE, and two particles of intermediate polarity for the glycerol
moiety. The tails are modeled by four non-polar particles.4 Solvent
is modeled explicitly, with four water molecules represented by a
single CG particle. Details of the CG forcefield can be found
elsewhere.5 The lamellar state of the lipids simulated is represented
very well with diverse properties such as the experimental area
per lipid, atom density distributions along the membrane normal,
the line tension, and the bending modulus reproduced.

In this study two unilamellar vesicles were placed in close
proximity in a rectangular simulation box.6 The vesicles were
formed by spontaneous aggregation in solution,5 and were therefore
at thermodynamic equilibrium. The vesicles are small, consisting
of close to 1000 lipids and measuring∼15 nm across.7 Various
lipid compositions were studied including pure dipalmitoyl-PC
(DPPC), pure palmitoyl-oleoyl-PE (POPE), and mixed systems
(DPPC with 25% DPPE or 25% lysoPC). Fusion could be induced
by constraining the vesicles to within a few nanometers of each
other. For PE containing vesicles fusion is observed within tens of
ns for distances up to∼1.5 nm (measured from the position of the
phosphate groups). Pure DPPC vesicles only fused spontaneously
when placed closer together (<1 nm), the formation of the initial
contact requiring more than 50 ns. Vesicles that contain lysoPC
appear even more resistant to fusion. No contact formation was
observed even for strongly dehydrated vesicles within 200 ns.

The fusion process is triggered by a fluctuation in one of the
monolayers which results in some head groups merging with the
opposing monolayer. This is a localized phenomenon involving only
a few lipids (Figure 1). From this point onwards the interaction is
attractive, and no constraints need to be applied. Due to the high

curvature of the vesicles the fusion occurs very fast, on a
nanosecond timescale. Fusion was found to proceed via two
pathways. Pathway I is illustrated in Figure 2. This shows stages
in the fusion of two small vesicles each consisting of 75% DPPC
and 25% DPPE. The initial contact quickly expands radially (∼10
ns), forming a so-called stalk intermediate. The stalk intermediate
is stable only for a short time (∼10 ns), before being replaced by
a hemifusion diaphragm (HD) in which the inner monolayers have
merged. Typically 5 to 15 ns after the HD forms a small fusion
pore appears. Once this happens the bilayer ruptures, completing
the fusion process.8 The whole process is in line with the stalk-
pore fusion mechanism.2 As predicted theoretically,9 the high energy
of the stalk intermediate is solved by tilting of the tails, avoiding
empty voids. However, in some simulations mixing of the outer
and inner monolayers was observed, which is not accounted for in
the stalk-pore model. Instead of a radial expansion of the initial
contact into the stalk intermediate, as in pathway I, the contact
appears to bend, forming a banana-shaped stalk (pathway II). The
head groups “escape” from the stalk center by inducing a pore in
one of the two vesicles (Figure 3). Such intermediates were
predicted previously from lattice models and observed in Brownian
dynamics simulations of lipid-like molecules.10 They result from a
reduced line tension in the vicinity of the bent stalk. This pore is
transient, with a lifetime of less than 5 ns. After the pore seals, a
HD structure forms as in pathway I. This is in contrast to the
predictions of the simple models.10 The time required to reach the
HD state is significantly longer via pathway II (typically around
50 ns). There is also an important structural difference between
the HD in the two pathways. Whereas in pathway I both vesicles
contribute lipids to the HD, in pathway II almost all lipids involved

Figure 1. Initial contact of two fusing vesicles. The two lipids drawn in
sphere representation trigger the fusion process.
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are from a single vesicle (Figure 3). The subsequent formation of
the fusion pore and the swelling into a tubular vesicle is similar in
both pathways. Due to the formation of this transient pore in
pathway II, the inner monolayer of the fused vesicle is mixed and
contains lipids originating from the outer monolayer of both
vesicles. This modified stalk-pore mechanism can explain the
mixing of monolayer content seen experimentally.11a,b The pore
formation also makes the vesicles leaky during fusion, in accordance
with experimental results.11b,c However, during pathway I an
increased exchange of solvent was also observed during the
transition from the stalk to the fusion pore.

Surprisingly, a given system can follow either pathway. For the
mixed PC/PE system two out of six fusion events followed path-
way I. For pure POPE vesicles pathway I occurred in two out of
four attempts. Further study is required to understand pathway
preference. In either pathway, there is a significant difference in
the stability of the HD of the pure POPE system vs that of the
mixed PC/PE system. Whereas a fusion pore appears quickly
(5-15 ns) in the mixed case, the hemifused state was stable for
at least 100 ns in three out of four simulations involving pure
POPE. For pure DPPC vesicles, formation of a HD was never
observed. Once the initial contact is formed, it quickly expands
radially as in pathway I. The system remained trapped in the
stalk state for the entire period simulated (200 ns). LysoPC, when
present in the inner monolayer only, is found to accelerate fusion
by strongly destabilizing the HD. The effect of composition on
the ability of the vesicles to fuse is in qualitative accordance with
the experimental observation1a that negatively curved lipids (such
as PE) promote fusion when present in the contacting monolayers
and inhibit fusion when present in the distal monolayers. Exactly
the opposite is observed for positively curved lipids (such as

lysoPC). Theoretical mean field calculations1a show that lipids with
negative curvature lower the free energy of stalk formation and
increase the free energy of pore formation in the HD. Mixed
systems, especially systems enriched with lysoPC in the inner- and
PE in the outer monolayers fuse most readily, in agreement with
our simulations.
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Figure 2. Intermediate structures during the fusion of two mixed PC/PE vesicles. Lipid headgroups are represented by large spheres, different
colors distinguish between lipids in the inner and outer monolayer and between the two vesicles. Orange spheres denote the amine site of PE, purple spheres,
water.

Figure 3. Close up of the stalk and HD formed in pathway II. Water and
headgroups trapped in the stalk center induce a transient pore (en-
circled).
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